Developing a framework to improve global estimates of conservation area coverage

Author:

Sykes Rachel E.,O'Neill Helen M.K.ORCID,Juffe-Bignoli DiegoORCID,Metcalfe KristianORCID,Stephenson P.J.ORCID,Struebig Matthew J.ORCID,Visconti PieroORCID,Burgess Neil D.ORCID,Kingston Naomi,Davies Zoe G.ORCID,Smith Robert J.ORCID

Abstract

Abstract Area-based conservation is a widely used approach for maintaining biodiversity, and there are ongoing discussions over what is an appropriate global conservation area coverage target. To inform such debates, it is necessary to know the extent and ecological representativeness of the current conservation area network, but this is hampered by gaps in existing global datasets. In particular, although data on privately and community-governed protected areas and other effective area-based conservation measures are often available at the national level, it can take many years to incorporate these into official datasets. This suggests a complementary approach is needed based on selecting a sample of countries and using their national-scale datasets to produce more accurate metrics. However, every country added to the sample increases the costs of data collection, collation and analysis. To address this, here we present a data collection framework underpinned by a spatial prioritization algorithm, which identifies a minimum set of countries that are also representative of 10 factors that influence conservation area establishment and biodiversity patterns. We then illustrate this approach by identifying a representative set of sampling units that cover 10% of the terrestrial realm, which included areas in only 25 countries. In contrast, selecting 10% of the terrestrial realm at random included areas across a mean of 162 countries. These sampling units could be the focus of future data collation on different types of conservation area. Analysing these data could produce more rapid and accurate estimates of global conservation area coverage and ecological representativeness, complementing existing international reporting systems.

Funder

UK Research and Innovation

Publisher

Cambridge University Press (CUP)

Subject

Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3