A specific adenylyl cyclase inhibitor (DDA) and a cyclic AMP-dependent protein kinase inhibitor (H-89) block the action of equine growth hormone on in vitro maturation of equine oocytes

Author:

Pereira Gabriel Ribas,Lorenzo Pedro Luis,Carneiro Gustavo Ferrer,Bilodeau-Goeseels Sylvie,Kastelic John,Liu Irwin K. M.

Abstract

SummaryThe objectives of this study were firstly to determine whether the stimulatory function of equine growth hormone (eGH) on equine oocyte maturation in vitro is mediated via cyclic adenosine monophosphate (cAMP); and secondly if the addition of eGH in vitro influences oocyte nuclear maturation and if this effect is removed when GH inhibitors are added to the culture. Cumulus–oocyte complexes (COCs) were recovered from follicles <25 mm in diameter and randomly allocated as follows: (i) control (no additives); and (ii) 400 ng/ml of eGH. A specific inhibitor against cyclic AMP-dependent protein kinase (H-89; 10−9, 10−11 or 10−15 M concentration) and a specific adenylate cyclase inhibitor, 2′,3′-dideoxyadenosine (DDA; 10−8, 10−10 or 10−14 M concentration) were used to observe whether they could block the eGH effect. After 30 h of in vitro maturation at 38.5°C with 5% CO2 in air, oocytes were stained with 10 μg/ml of Hoechst to evaluate nuclear status. More mature oocytes (P < 0.05) were detected when COCs were incubated with eGH (29 of 84; 34.5%) than in the control group (18 of 82; 21.9%). The H-89 inhibitor used at a concentration of 10−9 M (4 of 29; 13.8%) decreased (P < 0.05) the number of oocytes reaching nuclear maturation when compared with eGH (11 of 29; 38%). The DDA inhibitor at a concentration of 10−8 M (2 of 27; 7.4%) also reduced (P < 0.05) the number of oocytes reaching maturity when compared with the eGH group (9 of 30; 30%). Results from the present study show that H-89 and DDA can be used in vitro to block the eGH effect on equine oocyte maturation.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Developmental Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3