A singularly perturbed method for pole assignment control of a flexible manipulator

Author:

Konno Atsushi,Deman Liu,Uchiyama Masaru

Abstract

This paper focuses on using a singularly perturbed approach to derive a vibration damping control law in which a pole assignment feedback method is utilized. The composite control system is characterized by two components which can be computed separately. The one is Cartesian-based PI control which drives the end-effector of a flexible manipulator to track the desired time-based trajectory. The other is pole assignment feedback control which damps out vibrations during and at the end of trajectory tracking. An advantage of this composite control method in real implementation is that it does not require a derivative of the end-effector's position, and the derivatives of signals from the strain gauges. From the characteristics and implementation points of view, it appears to be simple to use. Laboratory experiments were conducted to evaluate the performance of the proposed control method.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Precision motion control of rotary flexible link manipulators using polynomial input trajectories and feedback control;Journal of Vibration and Control;2024-06-09

2. Dynamic Analysis of Flexible two Link Robotic Arm Considering Joint Stiffness;Journal of Mines, Metals and Fuels;2023-03-15

3. Motion Control of a Spatial Elastic Manipulator in the Presence of Measurement Noises;Arabian Journal for Science and Engineering;2021-07-14

4. Trajectory planning and diagonal recurrent neural network vibration control of a flexible manipulator using structural light sensor;Mechanical Systems and Signal Processing;2019-10

5. Review of modelling and control of flexible-link manipulators;Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering;2016-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3