Natural frequency prediction of the 3-RPS parallel manipulator using the substructure synthesis technology

Author:

Gong Yaping,Lou JunbinORCID

Abstract

AbstractThis paper proposed an elastodynamic modeling method combined with independent displacement coordinates and substructure synthesis technology. Firstly, the connecting rod was discretized, and the elastodynamic control equation for each element was established. The multipoint constraint element theory, linear algebra, and singularity analysis were used to identify the globally independent displacement coordinates of the manipulator. On this basis, the elastodynamic model using the substructure synthesis for the 3-PRS parallel manipulator (PM) was developed, with its natural frequencies distribution in the regular workspace discussed. The comparison with the finite-element results showed that the maximum error of the first three-order natural frequencies was within 1.03%, which verified the correctness of the analytical model. The proposed elastodynamic model included all the kinematic constraints of the manipulator without increasing the Lagrangian multiplier. The method is computationally efficient and assesses the dynamic behaviors of the mechanism at the predesign phase.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3