A nonlinear optimal control approach for underactuated power-line inspection robots

Author:

Rigatos GerasimosORCID,Zervos Nikolaos,Siano Pierluigi,Abbaszadeh Masoud,Pomares Jorge,Wira Patrice

Abstract

Abstract The article proposes a nonlinear optimal (H-infinity) control approach for a type of underactuated power-line inspection robots. To implement this control scheme, the state-space model of the power-line inspection robots undergoes first approximate linearization around a temporary operating point, through first-order Taylor series expansion and through the computation of the associated Jacobian matrices. To select the feedback gains of the controller an algebraic Riccati equation is solved at each time step of the control method. The global stability properties of the control loop are proven through Lyapunov analysis. The significance of the article’s results is outlined in the following: (i) the proposed control method is suitable for treating underactuated robotic systems and in general nonlinear dynamical systems with control inputs gain matrices which are in a nonquadratic form, (ii) by achieving stabilization of the power-line inspection robots in underactuation conditions the proposed control method ensures the reliable functioning of these robotic systems in the case of actuators’ failures or enables the complete removal of certain actuators and the reduction of the weight of these robotic systems, (iii) the proposed control method offers a solution to the nonlinear optimal control problem which is of proven global stability while also remaining computationally tractable, (iv) the proposed nonlinear optimal control method retains the advantages of linear optimal control that is fast and accurate tracking of reference setpoints under moderate variations of the control inputs, and (v) by minimizing the amount of energy that is dispersed by the actuators of the power-line inspection robots the proposed control method improves the autonomy and operational capacity of such robotic systems.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference54 articles.

1. [38] Toussaint, G. J. , Basar, T. and Bullo, F. , Optimal Tracking Control Techniques for Nonlinear Underactuated Systems,” Proc. IEEE CDC 2000, 39th IEEE Conference on Decision and Control, Sydney Australia (2000).

2. A novel power line inspection robot with dual-parallelogram architecture and its vibration suppression control;Yang;J. Adv. Robot.,2014

3. Development of assistive robotic arm for power line maintenance

4. Gain scheduled dynamic surface control for a class of underactuated mechanical systems using neural network disturbance observer

5. Nonlinear Optimal Control for the Wheeled Inverted Pendulum System

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3