Improved Motion Planning of Humanoid Robots Using Bacterial Foraging Optimization

Author:

Muni Manoj KumarORCID,Parhi Dayal R.,Kumar Priyadarshi BiplabORCID

Abstract

SUMMARYThis paper emphasizes on Bacterial Foraging Optimization Algorithm for effective and efficient navigation of humanoid NAO, which uses the foraging quality of bacteria Escherichia coli for getting shortest path between two locations in minimum time. The Gaussian cost function assigned to both attractant and repellent profile of bacterium performs a major role in obtaining the best path between any two locations. Mathematical formulations have been performed to design the control architecture for humanoid navigation using the proposed methodology. The developed approach has been tested in a simulation platform, and the simulation results have been validated in an experimental platform. Here, motion planning for both single and multiple humanoid robots on a common platform has been performed by integrating a petri-net architecture for multiple humanoid navigation. Finally, the results obtained from both the platforms are compared in terms of suitable navigational parameters, and proper agreements have been observed with minimal amount of error limits.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3