Four-bar linkage reconfigurable robotic wheel: Design, kinematic analysis, and experimental validation for adaptive size modification

Author:

Sandoval-Castro X. YamileORCID,Muñoz-Gonzalez Sergio,Garcia-Murillo Mario A.ORCID,Ferrusca-Monroy Pedro D.,Ruiz-Torres Maxiamiano F.

Abstract

AbstractThis article presents the development of a robot capable of modifying its size through a wheel reconfiguration strategy. The reconfigurable wheel design is based on a four-bar retractable mechanism that achieves variation of the effective radius of the wheel. A reconfiguration index is introduced based on the number of retractable mechanisms that predicts the radius of configuration according to the number of mechanisms implemented in the wheel. The kinematics of the retractable mechanism is studied to determine the theoretical reconfiguration radius during the transformation process, it is also evaluated numerically with the help of the GeoGebra software, and it is validated experimentally by image analysis using the Tracker software. The transformation process of the robot is investigated through an analysis of forces that consider the wheel in contact with the obstacle, the calculation of the wheel torque and the height of the obstacle to be overcome are presented. On the other hand, the experimental validation of the robot reconfiguration process is presented through the percentage of success shown by the robot to overcome obstacles of 50, 75, 100 and 125 mm. In addition, measurements of energy consumption during the transformation process are reported. Reconfigurable wheels, capable of adapting their size, offer innovative solutions to various challenges across different applications such as robotic exploration and search and rescue missions to industrial settings. Some key issues that these wheels can address include terrain adaptability enhancing a robot’s mobility over uneven surfaces, or obstacles; enhanced robotic design; cost-effective design; space efficiency; and versatility in applications.

Publisher

Cambridge University Press (CUP)

Reference35 articles.

1. The Deformable Wheel Robot Using Magic-Ball Origami Structure;Lee;International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 6B: 37th Mechanisms and Robotics Conference,2013

2. Manipulación visual-táctil para la recogida de residuos domésticos en exteriores

3. Development of a novel leg-wheel module with fast transformation and leaping capability

4. Detection and Tracking of Moving Obstacles (DATMO): A Review

5. Path Planning for the Mobile Robot: A Review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3