A review of bioinspired locomotion in lower GI endoscopy

Author:

Ahmed Jabed F.ORCID,Franco Enrico,Rodriguez Y. Baena Ferdinando,Darzi Ara,Patel Nisha

Abstract

Abstract Flexible endoscopy is the gold standard modality for diagnosis and therapeutic intervention of various colorectal conditions. A high bar is currently set for any new technology to replace the current modern colonoscope, but limitations do exist. For a robotic system to gain acceptance, ideally a clear advantage over the established standard needs to be demonstrated. The application of robotic technology inspired by locomotion observed in animals has been demonstrated in many fields including colonoscopy. A myriad of novel concepts has been proposed, which can overcome the anatomical and technical challenges. This review discusses novel and innovative examples of bioinspired robotic locomotion in the colon with a detailed comparison of studies alongside separating the discussion by animal sections of insect, marine and reptile locomotion. We also discuss the current advantages and challenges a bioinspired robot will bring to the colon. Bioinspired robotics in the colon is an exciting field of research with the potential to improve upon current existing high standards of practice in colonoscopy. By addressing areas that the conventional colonoscope is weaker in, studies are demonstrating improvement upon current limitations of standard practice and providing an insight into new methods of engineering and fabrication. Focus on the technological, mechanical and regulatory barriers is key to achieve acceptance into standard practice and will allow the aspiration of a safe, low discomfort, low cost and potentially fully autonomous robotic colonoscope to be not too distant in the future of colonoscopy.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3