Estimated path information gain-based robot exploration under perceptual uncertainty

Author:

Liu Jie,Wang Chaoqun,Chi WenzhengORCID,Chen Guodong,Sun Lining

Abstract

AbstractAt present, the frontier-based exploration has been one of the mainstream methods in autonomous robot exploration. Among the frontier-based algorithms, the method of searching frontiers based on rapidly exploring random trees consumes less computing resources with higher efficiency and performs well in full-perceptual scenarios. However, in the partially perceptual cases, namely when the environmental structure is beyond the perception range of robot sensors, the robot often lingers in a restricted area, and the exploration efficiency is reduced. In this article, we propose a decision-making method for robot exploration by integrating the estimated path information gain and the frontier information. The proposed method includes the topological structure information of the environment on the path to the candidate frontier in the frontier selection process, guiding the robot to select a frontier with rich environmental information to reduce perceptual uncertainty. Experiments are carried out in different environments with the state-of-the-art RRT-exploration method as a reference. Experimental results show that with the proposed strategy, the efficiency of robot exploration has been improved obviously.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference33 articles.

1. Algorithms for autonomous exploration and estimation in compliant environments

2. Ros: An Open-Source Robot Operating System;Quigley;ICRA Workshop on Open Source Software,2009

3. Rapidly-exploring random trees: A new tool for path planning;Lavalle;Computer Science Department,1998

4. Occupancy map building through Bayesian exploration

5. Active exploration using a scheme for autonomous allocation of landmarks

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3