Deep learning analysis based on multi-sensor fusion data for hemiplegia rehabilitation training system for stoke patients

Author:

Zhang Peng,Zhang JunxiaORCID

Abstract

Abstract By recognizing the motion of the healthy side, the lower limb exoskeleton robot can provide therapy to the affected side of stroke patients. To improve the accuracy of motion intention recognition based on sensor data, the research based on deep learning was carried out. Eighty healthy subjects performed gait experiments under five different gait environments (flat ground, 10 ${}^\circ$ upslope and downslope, and upstairs and downstairs) by simulating stroke patients. To facilitate the training and classification of the neural network, this paper presents template processing schemes to adapt to different data formats. The novel algorithm model of a hybrid network model based on convolutional neural network (CNN) and Long–short-term memory (LSTM) model is constructed. To mitigate the data-sparse problem, a spatial–temporal-embedded LSTM model (SQLSTM) combining spatial–temporal influence with the LSTM model is proposed. The proposed CNN-SQLSTM model is evaluated on a real trajectory dataset, and the results demonstrate the effectiveness of the proposed model. The proposed method will be used to guide the control strategy design of robot system for active rehabilitation training.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference47 articles.

1. Localization and velocity tracking of human via 3 IMU sensors

2. [28] l. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. WardeFarley, S. Ozair, A. Courville and Y. Bengio. “Generative adversarial nets.” Adv. Neural Inf. Process. Syst. (2014), 2672–2680.

3. Research on gait classification based on acceleration sensor;Chen;J. Sens.,2013

4. Accelerometer Based Gesture Recognition Using Fusion Features and SVM

5. Evaluation of classification performance in human lower limb jump phases of signal correlation information and LSTM models

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3