Force-based organization and control scheme for the non-prehensile cooperative transportation of objects

Author:

Rosenfelder MarioORCID,Ebel HenrikORCID,Eberhard PeterORCID

Abstract

AbstractOver decades of robotics research, cooperative object transportation has been studied as a meaningful model problem for robotic networks because it possesses a variety of crucial challenges. Although these challenges are demanding, the cooperation of multiple robots has the potential to solve automation problems that are beyond the scope of an individual robot. So far, the model problem has mostly been addressed by explicitly controlling the robots’ positions. However, the position-based approach suffers from some intrinsic detriments, for example, the lack of explicit feedback between robots and object. Moreover, it remains an open question how many robots shall be employed to ensure a successful transportation. This paper’s purpose is to overcome these challenges using a novel force-based approach taking into account the robots’ actual manipulation capabilities, that is, the exerted forces. Using cost-efficient hardware, the interaction forces are measured and, what is more, explicitly controlled by a highly responsive onboard controller. Employing a tailored software architecture, the novel force-based scheme, useful for robotic manipulation beyond the benchmark problem, is probably the most flexible of its kind regarding the number of robots and the object’s shape. The controller’s functionality and performance as well as the scheme’s versatility are demonstrated by several hardware experiments.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3