Force tracking control for motion synchronization in human-robot collaboration

Author:

Li Yanan,Ge Shuzhi Sam

Abstract

SUMMARYIn this paper, motion synchronization is investigated for human–robot collaboration such that the robot is able to “actively” follow its human partner. Force tracking is achieved with the proposed method under the impedance control framework, subject to uncertain human limb dynamics. Adaptive control is developed to deal with point-to-point movement, and learning control and neural networks control are developed to generate periodic and arbitrary continuous trajectories, respectively. Stability and tracking performance of the closed-loop system are discussed through rigorous analysis. The validity of the proposed method is verified through simulation and experiment studies.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Human-Robot Complementary Collaboration for Flexible and Precision Assembly;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Decentralized Position/torque Control of Modular Robot Manipulators via Interaction Torque Estimation-based Human Motion Intention Identification;International Journal of Control, Automation and Systems;2024-04-08

3. Fuzzy logic system-based force tracking control of robot in highly dynamic environments;Industrial Robot: the international journal of robotics research and application;2024-02-15

4. Neural Control for Human–Robot Interaction with Human Motion Intention Estimation;IEEE Transactions on Industrial Electronics;2024

5. A Physical Human–Robot Interaction Framework for Trajectory Adaptation Based on Human Motion Prediction and Adaptive Impedance Control;IEEE Transactions on Automation Science and Engineering;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3