Multi-objective optimization approach for coverage path planning of mobile robot

Author:

Sharma Monex,Voruganti Hari KumarORCID

Abstract

Abstract Coverage path planning (CPP) is a subfield of path planning problems in which free areas of a given domain must be visited by a robot at least once while avoiding obstacles. In some situations, the path may be optimized for one or more criteria such as total distance traveled, number of turns, and total area covered by the robot. Accordingly, the CPP problem has been formulated as a multi-objective optimization (MOO) problem, which turns out to be a challenging discrete optimization problem, hence conventional MOO algorithms like Non-dominated Sorting Genetic Algorithm-2 (NSGA-II) do not work as it is. This study implements a modified NSGA-II to solve the MOO problem of CPP for a mobile robot. In this paper, the proposed method adopted two objective functions: (1) the total distance traveled by the robot and (2) the number of turns taken by the robot. The two objective functions are used to calculate energy consumption. The proposed method is compared to the hybrid genetic algorithm (HGA) and the traditional genetic algorithm (TGA) in a rectilinear environment containing obstacles of various complex shapes. In addition, the results of the proposed algorithm are compared to those generated by HGA, TGA, oriented rectilinear decomposition, and spatial cell diffusion and family of spanning tree coverage in existing research papers. The results of all comparisons indicate that the proposed algorithm outperformed the existing algorithms by reducing energy consumption by 5 to 60%. This paper provides the facility to operate the robot in different modes.

Publisher

Cambridge University Press (CUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3