Design, modeling and solar tracking control for a novel parabolic dish solar concentrator

Author:

Mo HanORCID,Liu Fanmao,Liao Cancan,Zhang Yuanyuan

Abstract

AbstractA novel parabolic dish solar concentrator based on the improved 3-RPS parallel manipulator to drive the reflective mirror facet is proposed and designed, which can not only automatically adjust the position and orientation of the reflective mirror facet but also have the advantages of independent drive, high stiffness and no cumulative error. Then, using the coordinate transformation matrixes of the novel parabolic dish solar tracking platform, the kinematics models of the 3-RPS parallel manipulators associated with the solar altitude and azimuth angles are established. The altitude and azimuth angles of the solar movement at the installation location are calculated according to the calculation formula of solar position. To solve the problem of too many telescopic rods of the 3-RPS parallel manipulator, a genetic algorithm is used to optimize the height of the concentrator’s center of mass. Then the ideal trajectory and attitude of each telescopic rod of the 3-RPS parallel manipulators at different times of the day can be obtained with the inverse kinematics. The particle swarm optimization (PSO)-proportional-integral-derivative (PID) controller, which uses PSO algorithm to tune PID parameters, is proposed for solar trajectory tracking of the novel parabolic dish solar concentrator. The visual simulation model of the parabolic dish system is established in Simscape Multibody, and the trajectory tracking control experiment is carried out. The experimental results show that the trajectory tracking error of the novel dish solar tracking platform can be within 2.6 mm by using the PSO-PID controller.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3