Tangential-force detection ability of three-axis fingernail-color sensor aided by CNN

Author:

Watanabe Keisuke,Chen Yandong,Komura HirakuORCID,Ohka MasahiroORCID

Abstract

AbstractWe create a new tactile recording system with which we develop a three-axis fingernail-color sensor that can measure a three-dimensional force applied to fingertips by observing the change of the fingernail’s color. Since the color change is complicated, the relationships between images and three-dimensional forces were assessed using convolution neural network (CNN) models. The success of this method depends on the input data size because the CNN model learning requires big data. Thus, to efficiently obtain big data, we developed a novel measuring device, which was composed of an electronic scale and a load cell, to obtain fingernail images with 0 $^\circ$ to 360 $^\circ$ directional tangential force. We performed a series of evaluation experiments to obtain movies of the color changes caused by the three-axis forces and created a data set for the CNN models by transforming the movies to still images. Although we produced a generalized CNN model that can evaluate the images of any person’s fingernails, its root means square error (RMSE) exceeded both the whole and individual models, and the individual models showed the smallest RMSE. Therefore, we adopted the individual models, which precisely evaluated the tangential-force direction of the test data in an $F_x$ - $F_y$ plane within around $\pm$ 2.5 $^\circ$ error at the peak points of the applied force. Although the fingernail-color sensor possessed almost the same level of accuracy as previous sensors for normal-force tests, the present fingernail-color sensor acts as the best tangential sensor because the RMSE obtained from tangential-force tests was around 1/3 that of previous studies.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation

Reference21 articles.

1. Dropout: A simple way to prevent neural networks from overfitting;Srivastava;J. Mach. Learn. Res.,2014

2. The study of fingernail sensors for measuring finger forces and bending;Nomura;TVRSJ,2001

3. Estimation of fingertip contact force by plethysmography in proximal part of finger;Hinatsu;Med. Biol. Eng.,2017

4. Measurement of Finger Posture and Three-Axis Fingertip Touch Force Using Fingernail Sensors

5. [20] OpenCV/Color conversions. Available online: https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html (accessed on 21st, Feb., 2023).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Pressure Sensor of Circular Monocrystalline Silicon Chassis;Journal of Physics: Conference Series;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3