A comparative study of in-field motion capture approaches for body kinematics measurement in construction

Author:

Seo JoonOh,Alwasel Abdullatif,Lee SangHyun,Abdel-Rahman Eihab M.,Haas Carl

Abstract

SummaryDue to physically demanding tasks in construction, workers are exposed to significant safety and health risks. Measuring and evaluating body kinematics while performing tasks helps to identify the fundamental causes of excessive physical demands, enabling practitioners to implement appropriate interventions to reduce them. Recently, non-invasive or minimally invasive motion capture approaches such as vision-based motion capture systems and angular measurement sensors have emerged, which can be used for in-field kinematics measurements, minimally interfering with on-going work. Given that these approaches have pros and cons for kinematic measurement due to adopted sensors and algorithms, an in-depth understanding of the performance of each approach will support better decisions for their adoption in construction. With this background, the authors evaluate the performance of vision-based (RGB-D sensor-, stereovision camera-, and multiple camera-based) and an angular measurement sensor-based (i.e., an optical encoder) approach to measure body angles through experimental testing. Specifically, measured body angles from these approaches were compared with the ones obtained from a marker-based motion capture system that has less than 0.1 mm of errors. The results showed that vision-based approaches have about 5–10 degrees of error in body angles, while an angular measurement sensor-based approach measured body angles with about 3 degrees of error during diverse tasks. The results indicate that, in general, these approaches can be applicable for diverse ergonomic methods to identify potential safety and health risks, such as rough postural assessment, time and motion study or trajectory analysis where some errors in motion data would not significantly sacrifice their reliability. Combined with relatively accurate angular measurement sensors, vision-based motion capture approaches also have great potential to enable us to perform in-depth physical demand analysis such as biomechanical analysis that requires full-body motion data, even though further improvement of accuracy is necessary. Additionally, understanding of body kinematics of workers would enable ergonomic mechanical design for automated machines and assistive robots that helps to reduce physical demands while supporting workers' capabilities.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3