Author:
Han SangUk,Achar Madhav,Lee SangHyun,Peña-Mora Feniosky
Abstract
Abstract
Background
For construction management, data collection is a critical process for gathering and measuring information for the evaluation and control of ongoing project performances. Taking into account that construction involves a significant amount of manual work, worker monitoring can play a key role in analyzing operations and improving productivity and safety. However, time-consuming tasks involved in field observation have brought up the issue of implementing worker observation in daily management practice.
Methods
In an effort to address the issue, this paper investigates the performances of a cost-effective and portable RGB-D sensor, based on recent research efforts extended from our previous study. The performance of an RGB-D sensor is evaluated in terms of (1) the 3D positions of the body parts tracked by the sensor, (2) the 3D rotation angles at joints, and (3) the impact of the RGB-D sensor’s accuracy on motion analysis. For the assessment, experimental studies were undertaken to collect motion capture datasets using an RGB-D sensor and a marker-based motion capture system, VICON, and to analyze errors as compared with the VICON used as the ground truth. As a test case, 25 trials of ascending and descending during ladder climbing were recorded simultaneously with both systems, and the resulting motion capture datasets (i.e., 3D skeleton models) were temporally and spatially synchronized for their comparison.
Results
Through the comparative assessment, we found a discrepancy of 10.7 cm in the tracked locations of body parts, and a difference of 16.2 degrees in rotation angles. However, motion detection results show that the inaccuracy of an RGB-D sensor does not have a considerable effect on action recognition in the experiment.
Conclusions
This paper thus provides insight into the accuracy of an RGB-D sensor on motion capture in various measures and directions of further research for the improvement of accuracy.
Publisher
Springer Science and Business Media LLC
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modeling and Simulation
Reference26 articles.
1. Chang CY, Lange B, Zhang M, Koenig S, Requejo P, Somboon N, Sawchuk AA, Rizzo AA: Towards pervasive physical rehabilitation using Microsoft Kinect. San Diego, CA: 2012 6th international conference on pervasive computing technologies for healthcare (pervasiveHealth); 2012:159–162. May 21–24, 2012
2. Cheng T, Migliaccio GC, Teizer J, Gatti UC: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers. Journal of Computing in Civil Engineering 2013,27(3):320–335. 10.1061/(ASCE)CP.1943-5487.0000222
3. Chow J, Ang K, Lichti D, Teskey W: Performance analysis of a low-cost triangulation-based 3D camera: Microsoft Kinect system. Melbourne, Austrailia: The XXII Congress of the International Society for Photogrammetry and Remote Sensing; 2012.
4. CPWP – The Center for Construction Research and Training: The construction chart book: the U.S. construction industry and its workers. Washington, D.C: CPWP; 2008.
5. Dutta T: Evaluation of the Kinect sensor for 3-D kinematic measurement in the workplace. Applied Ergonomics 2012, 43: 645–649. 10.1016/j.apergo.2011.09.011
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献