Empirical assessment of a RGB-D sensor on motion capture and action recognition for construction worker monitoring

Author:

Han SangUk,Achar Madhav,Lee SangHyun,Peña-Mora Feniosky

Abstract

Abstract Background For construction management, data collection is a critical process for gathering and measuring information for the evaluation and control of ongoing project performances. Taking into account that construction involves a significant amount of manual work, worker monitoring can play a key role in analyzing operations and improving productivity and safety. However, time-consuming tasks involved in field observation have brought up the issue of implementing worker observation in daily management practice. Methods In an effort to address the issue, this paper investigates the performances of a cost-effective and portable RGB-D sensor, based on recent research efforts extended from our previous study. The performance of an RGB-D sensor is evaluated in terms of (1) the 3D positions of the body parts tracked by the sensor, (2) the 3D rotation angles at joints, and (3) the impact of the RGB-D sensor’s accuracy on motion analysis. For the assessment, experimental studies were undertaken to collect motion capture datasets using an RGB-D sensor and a marker-based motion capture system, VICON, and to analyze errors as compared with the VICON used as the ground truth. As a test case, 25 trials of ascending and descending during ladder climbing were recorded simultaneously with both systems, and the resulting motion capture datasets (i.e., 3D skeleton models) were temporally and spatially synchronized for their comparison. Results Through the comparative assessment, we found a discrepancy of 10.7 cm in the tracked locations of body parts, and a difference of 16.2 degrees in rotation angles. However, motion detection results show that the inaccuracy of an RGB-D sensor does not have a considerable effect on action recognition in the experiment. Conclusions This paper thus provides insight into the accuracy of an RGB-D sensor on motion capture in various measures and directions of further research for the improvement of accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Computer Vision and Pattern Recognition,Engineering (miscellaneous),Modeling and Simulation

Reference26 articles.

1. Chang CY, Lange B, Zhang M, Koenig S, Requejo P, Somboon N, Sawchuk AA, Rizzo AA: Towards pervasive physical rehabilitation using Microsoft Kinect. San Diego, CA: 2012 6th international conference on pervasive computing technologies for healthcare (pervasiveHealth); 2012:159–162. May 21–24, 2012

2. Cheng T, Migliaccio GC, Teizer J, Gatti UC: Data fusion of real-time location sensing and physiological status monitoring for ergonomics analysis of construction workers. Journal of Computing in Civil Engineering 2013,27(3):320–335. 10.1061/(ASCE)CP.1943-5487.0000222

3. Chow J, Ang K, Lichti D, Teskey W: Performance analysis of a low-cost triangulation-based 3D camera: Microsoft Kinect system. Melbourne, Austrailia: The XXII Congress of the International Society for Photogrammetry and Remote Sensing; 2012.

4. CPWP – The Center for Construction Research and Training: The construction chart book: the U.S. construction industry and its workers. Washington, D.C: CPWP; 2008.

5. Dutta T: Evaluation of the Kinect sensor for 3-D kinematic measurement in the workplace. Applied Ergonomics 2012, 43: 645–649. 10.1016/j.apergo.2011.09.011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3