Three-Dimensional Reconstruction Based on Visual SLAM of Mobile Robot in Search and Rescue Disaster Scenarios

Author:

Wang Hongling,Zhang Chengjin,Song Yong,Pang Bao,Zhang Guangyuan

Abstract

SummaryConventional simultaneous localization and mapping (SLAM) has concentrated on two-dimensional (2D) map building. To adapt it to urgent search and rescue (SAR) environments, it is necessary to combine the fast and simple global 2D SLAM and three-dimensional (3D) objects of interest (OOIs) local sub-maps. The main novelty of the present work is a method for 3D OOI reconstruction based on a 2D map, thereby retaining the fast performances of the latter. A theory is established that is adapted to a SAR environment, including the object identification, exploration area coverage (AC), and loop closure detection of revisited spots. Proposed for the first is image optical flow calculation with a 2D/3D fusion method and RGB-D (red, green, blue + depth) transformation based on Joblove–Greenberg mathematics and OpenCV processing. The mathematical theories of optical flow calculation and wavelet transformation are used for the first time to solve the robotic SAR SLAM problem. The present contributions indicate two aspects: (i) mobile robots depend on planar distance estimation to build 2D maps quickly and to provide SAR exploration AC; (ii) 3D OOIs are reconstructed using the proposed innovative methods of RGB-D iterative closest points (RGB-ICPs) and 2D/3D principle of wavelet transformation. Different mobile robots are used to conduct indoor and outdoor SAR SLAM. Both the SLAM and the SAR OOIs detection are implemented by simulations and ground-truth experiments, which provide strong evidence for the proposed 2D/3D reconstruction SAR SLAM approaches adapted to post-disaster environments.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference52 articles.

1. 49. T. Fujiwara , T. Kamegawa and A. Gofuku , “Stereoscopic Presentation of 3D Scan Data Obtained by Mobile Robot,” Proceedings of the 2011 IEEE International Symposium on Safety, Security and Rescue Robotics, Kyoto, Japan (2011) pp. 178–183.

2. Intelligent Sensing Systems for Rescue Robots: Landmark Identification and Three-Dimensional Mapping of Unknown Cluttered Urban Search and Rescue Environments

3. 43. E. Mihankhah , H. D. Taghirad , A. Kalantari , E. Aboosaeedan and H. Semsarilar , “Line Matching Localization and Map Building with Least Square,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Suntec Convention and Exhibition Center, Singapore (2009) pp. 1734–1739.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3