Self-organizing approach for learning the forward kinematic multiple solutions of parallel manipulators

Author:

Assal Samy F. M.

Abstract

SUMMARYContrary to the inverse kinematics, the forward kinematics of parallel manipulators involves solving highly non-linear equations and provides more than one feasible end-effector pose, which are called the assembly modes, for a given set of link lengths or joint angles. Out of the multiple feasible solutions, only one solution can be achieved from a certain initial configuration. Therefore, in this paper, the Kohonen's self-organizing map (SOM) is proposed to learn and classify the multiple solution branches of the forward kinematics and then provide a unique real-time solution among the assembly modes. Each solution of the multiple feasible ones is coded using IF-THEN rules based on the values of the passive joint variables. Due to not only the classification but also the associative memory learning abilities of the SOM, the passive joint variables vector, the end-effector pose vector, and this class code are associated with the active joint variables vector constituting the input vector to the SOM in the offline learning phase. In the online testing phase, only the active joint variables vector and the class code are fed to the SOM to obtain the unique end-effector pose vector. The Jacobian matrix calculated at the SOM output layer is used for further fine tuning this output to obtain an accurate end-effector pose vector. Simulations are conducted for 3-RPR and 3-RRR planar parallel manipulators to evaluate the performance of the proposed method. The results proved high accuracy of the desired unique solution in real-time.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forward, Inverse Kinematics and Optimal Design of a Parallel Solar Tracker;2024 9th International Conference on Automation, Control and Robotics Engineering (CACRE);2024-07-18

2. Six-bar Pulley-Guided Node Based Prismatic Tensegrity Robot Form-finding Analysis and Experiment;2023 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM);2023-06-28

3. A Simplified Kinematics and Kinetics Formulation for Prismatic Tensegrity Robots: Simulation and Experiments;Robotics;2023-04-03

4. Saturation-Allowed Neural Dynamics Applied to Perturbed Time-Dependent System of Linear Equations and Robots;IEEE Transactions on Industrial Electronics;2021-10

5. References;Kinematic Control of Redundant Robot Arms Using Neural Networks;2019-02-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3