A Simplified Kinematics and Kinetics Formulation for Prismatic Tensegrity Robots: Simulation and Experiments

Author:

Yeshmukhametov Azamat1ORCID,Koganezawa Koichi2ORCID

Affiliation:

1. School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan

2. Department of Mechanical Engineering, Tokai University, Hiratsuka 259-1207, Japan

Abstract

Tensegrity robots offer several advantageous features, such as being hyper-redundant, lightweight, shock-resistant, and incorporating wire-driven structures. Despite these benefits, tensegrity structures are also recognized for their complexity, which presents a challenge when addressing the kinematics and dynamics of tensegrity robots. Therefore, this research paper proposes a new kinematic/kinetic formulation for tensegrity structures that differs from the classical matrix differential equation framework. The main contribution of this research paper is a new formulation, based on vector differential equations, which can be advantageous when it is convenient to use a smaller number of state variables. The limitation of the proposed kinematics and kinetic formulation is that it is only applicable for tensegrity robots with prismatic structures. Moreover, this research paper presents experimentally validated results of the proposed mathematical formulation for a six-bar tensegrity robot. Furthermore, this paper offers an empirical explanation of the calibration features required for successful experiments with tensegrity robots.

Publisher

MDPI AG

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3