A new comprehensive performance optimization approach for Earth-contact mechanism based on terrain-adaptability task

Author:

Tang Hongyan,Zhang James M.,Zhang DanORCID

Abstract

AbstractEarth-contact mechanism (ECM), a type of mechanism to keep the system in contact with the earth and to move with the terrain changes. This paper uses the virtual equivalent parallel mechanism (VEPM) to convert the terrain data into the kinematical variables of the moving platform in the VEPM, and further analyzes the performance of the VEPM at each terrain point. Then, the comprehensive performance of the VEPM is chosen as the optimization goal, and a task-oriented dimensional optimization approach combined with the particle swarm algorithm and the neural network algorithm is proposed. This paper conducted a comparative experiment to verify the superiority of the new approach in optimizing the ECM’s comprehensive performance, whose performance analysis also can be applied into the layout design of the ECM. This paper proposed an analysis method to construct the ECM’s performance map based on the digital terrain map, which helps the control system and operator to make the optimal control decision.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3