Development of a Method for Data Dimensionality Reduction in Loop Closure Detection: An Incremental Approach

Author:

Moreira Leandro A. S.ORCID,Justel Claudia M.,de Oliveira Jauvane C.,Rosa Paulo F. F.

Abstract

SUMMARYThis article proposes a method for incremental data dimensionality reduction in loop closure detection for robotic autonomous navigation. The approach uses dominant eigenvector concept for: (a) spectral description of visual datasets and (b) representation in low dimension. Unlike most other papers on data dimensionality reduction (which is done in batch mode), our method combines a sliding window technique and coordinate transformation to achieve dimensionality reduction in incremental data. Experiments in both simulated and real scenarios were performed and the results are suitable.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference55 articles.

1. 36. Hartmann, J. , Klussendorff, J. and Maehle, E. , “A Comparison of Feature Descriptors for Visual SLAM”, IEEE European Conference on Mobile Robots (ECMR) (2013) pp. 56–61.

2. 38. Ortiz, R. , “FREAK: Fast Retina Keypoint”, Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012) pp. 510–517.

3. Graph-theoretic connectivity control of mobile robot networks

4. 14. Yairi, T. , “Map Building without Localization by Dimensionality Reduction Techniques”, Proceedings of the 24th International Conference on Machine Learning (2007) pp. 1071–1078.

5. Nonlinear Dimensionality Reduction by Locally Linear Embedding

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3