Abstract
AbstractThis paper focuses on developing a novel hybrid-haptic (nHH) device with a remote center of rotation with 4 DOFs (degrees of freedom) intendant to be used as a haptic device. The new architecture is composed of two chains handling each one a part of the motions. It has the advantages of a parallel robot as high stiffness and accuracy, and the large workspace of the serial robots. The optimal synthesis of the nHH was performed using real-coded genetic algorithms. The optimization criteria and constraints were established and successively formulated and solved using a mono-objective function. A validation and comparison study were performed between the spherical parallel manipulator and the nHH. The obtained results are promising since the nHH is compared to other similar task devices, such as spherical parallel manipulator, and presents a suitable kinematic performance with a task workspace free singularity inside.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation,Artificial Intelligence,Computer Vision and Pattern Recognition,Computational Mechanics,Rehabilitation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献