Effective UAV patrolling for swarm of intruders with heterogeneous behavior

Author:

Moltajaei Farid AliORCID,Mei Kuan Lim,Kamal Md Abdus Samad,Wong KokSheik

Abstract

AbstractThe phenomenal growth in the utilization of commercial unmanned aerial vehicles (UAVs) or drones leads to an urgent need for new approaches to ensure safety in the sky. Effective aerial surveillance requires patrolling swarms to react according to the various behaviors demonstrated by intruding swarms, but existing approaches are not practical when dealing with a large number of drones. Specifically, predicting the behaviors or planned paths of the intruding swarms is highly challenging as intruders may perform evasive strategies to avoid detection. Therefore, this work utilizes heuristic search strategies and investigates how various intruder behaviors affect the search performance. To investigate the search performance, a swarm versus swarm simulator is developed. Using the simulator, first, a comparative study is performed to evaluate how intruders’ behaviors can affect the performance of the patrolling swarm. Subsequently, three approaches, including single-objective optimization, multi-objective optimization, and Lévy flight, are compared in terms of their detection performance in a bounded space. The results suggest that multi-objective optimization outperforms both single-objective optimization and Lévy flight-based approaches. Furthermore, our results show that intruders have a lower chance of being tracked when moving in a dense crowd, and this finding reaffirms the schooling behaviors of fish. In a specific simulation scenario, the total percentage of detection is above 90%. However, the detection percentage is highly related to other factors such as search space, number of patrolling UAVs, and the intruders’ behaviors.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference31 articles.

1. Multi-robot target detection and tracking: taxonomy and survey

2. [14] Gómez, V. , Thijssen, S. , Symington, A. , Hailes, S. and Kappen, H. J. “Real-Time Stochastic Optimal Control for Multi-Agent Quadrotor Systems,” In: ICAPS (2016) pp. 468–476.

3. Search Strategies and Specifications in a Swarm versus Swarm Context

4. [12] Farid, A. M. , Egerton, S. , Barca, J. C. and Kamal, M. A. S. “Adaptive Multi-objective Search in a Swarm vs Swarm Context,” In: 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, 2018) pp. 3641–3646.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3