Effect of soybean growth stage on sensitivity to sublethal rates of dicamba and 2,4-D

Author:

Scholtes Alanna B.,Sperry Benjamin P.ORCID,Reynolds Daniel B.ORCID,Irby J. Trenton,Eubank Thomas W.,Barber L. Thomas,Dodds Darrin M.

Abstract

AbstractField experiments were conducted in 2012 and 2013 across four locations for a total of 6 site-years in the midsouthern United States to determine the effect of growth stage at exposure on soybean sensitivity to sublethal rates of dicamba (8.8 g ae ha−1) and 2,4-D (140 g ae ha−1). Regression analysis revealed that soybean was most susceptible to injury from 2,4-D when exposed between 413 and 1,391 accumulated growing degree days (GDD) from planting, approximately between V1 and R2 growth stages. In terms of terminal plant height, soybean was most susceptible to 2,4-D between 448 and 1,719 GDD, or from V1 to R4. However, maximum susceptibility to 2,4-D was only between 624 and 1,001 GDD or from V3 to V5 for yield loss. As expected, soybean was sensitive to dicamba for longer spans of time, ranging from 0 to 1,162 GDD for visible injury or from emergence to R2. Likewise, soybean height was most affected when dicamba exposure occurred between 847 and 1,276 GDD or from V4 to R2. Regarding grain yield, soybean was most susceptible to dicamba between 820 and 1,339 GDD or from V4 to R2. Consequently, these data indicate that soybean response to 2,4-D and dicamba can be variable within vegetative or reproductive growth stages; therefore, specific growth stage at the time of exposure should be considered when evaluating injury from off-target movement. In addition, application of dicamba near susceptible soybean within the V4 to R2 growth stages should be avoided because this is the time of maximum susceptibility. Research regarding soybean sensitivity to 2,4-D and dicamba should focus on multiple exposure times and also avoid generalizing growth stages to vegetative or reproductive.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3