Early Detection of Dicamba and 2,4-D Herbicide Drifting Injuries on Soybean with a New Spatial–Spectral Algorithm Based on LeafSpec, an Accurate Touch-Based Hyperspectral Leaf Scanner

Author:

Niu Zhongzhong1ORCID,Young Julie2,Johnson William G.2ORCID,Young Bryan2,Wei Xing1ORCID,Jin Jian1

Affiliation:

1. Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA

2. Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA

Abstract

In soybeans, off-target damage from the use of dicamba and 2,4-D herbicides for broadleaf weed control can significantly impact sensitive vegetation and crops. The early detection and assessment of such damage are critical for plant diagnostic labs and regulatory agencies to inform regulated usage policies. However, the existing technologies that calculate the average spectrum often struggle to detect and differentiate the damage caused by these herbicides, as they share a similar mode-of-action. In this study, a high-precision spatial and spectral imaging solution was tested for the early detection of dicamba and 2,4-D-induced damage in soybeans. A 2021 study was conducted using LeafSpec, a touch-based hyperspectral leaf scanner, to detect damage on soybean leaves. VIS-NIR (visible–near infrared) hyperspectral images were captured from 180 soybean plants exposed to nine different herbicide treatments at different intervals after spraying. Leaf damage was distinguished as early as 2 h after treatment (HAT) using pairwise partial least squares discriminant analysis (PLS-DA) models based on spectral data. Leaf color distribution, texture, and morphological features were analyzed to separate herbicide dosages. By fully exploiting the spatial and spectral information from high-resolution hyperspectral images, classification accuracy was improved from 57.4% to over 80% for all evaluation dates. This work demonstrates the potential and advantages of using spectral and spatial features of LeafSpec hyperspectral images for the early and accurate detection of herbicide damage in soybean plants.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3