Nowhere to escape – Diversity and community composition of ferns and lycophytes on the highest mountain in Honduras

Author:

Reyes-Chávez JohanORCID,Quail Megan,Tarvin Stephanie,Kessler Michael,Batke Sven P.

Abstract

AbstractIPCC predictions for Honduras indicate that temperature will increase by up to 3–6°C and precipitation will decrease by up to 7–13% by the year 2050. To better understand how fern and lycophyte communities might be affected by climate change, we comprehensively surveyed the community compositions of ferns and lycophytes at Celaque National Park, the highest mountain in Honduras. We surveyed a total of 80 20 × 20 m2 plots along an altitudinal gradient of 1249–2844 m a.s.l., identifying all species and estimating their abundances. We recorded a total of 11,098 individuals from 160 species and 61 genera. Community composition was strongly influenced by changes in altitude, precipitation and the abundance of bryophytes (a proxy for air humidity). Of the 160 species, 63 are expected, under a RCP2.6 scenario for the year 2050, to shift their range fully or partially above the maximum altitude of the mountain. Of these, 65.1% are epiphytes. We found that species with narrow altitudinal ranges at high altitudes were more at risk. Our study indicated that conservation efforts should prioritise higher altitudinal sites, focusing particularly on preserving the vulnerable epiphytic fern species, which are likely to be at greater risk.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3