Winter Sea-ice mapping from multi-parameter synthetic-aperture radar data

Author:

Rignot Eric,Drinkwater Mark R.

Abstract

AbstractThe limitations of current and immediate future single-frequency, single-polarization, space-borne SARs for winter sea-ice mapping are quantitatively examined, and improvements are suggested by combining frequencies and polarizations. Ice-type maps are generated using multi-channel, air-borne SAR observations of winter sea ice in the Beaufort Sea to identify six ice conditions: (1) multi-year sea ice; (2) compressed first-year ice; (3) first-year rubble and ridges; (4) first-year rough ice; (5) first-year smooth ice; and (6) first-year thin ice. At a single polarization, C- (λ = 5.6 cm) and L- (λ = 24 cm) band frequencies yield a classification accuracy of 67 and 71%, because C-band confuses multi-year ice and compressed, rough, thick first-year ice surrounding multi-year ice floes, and L-band confuses multi-year ice and deformed first-year ice. Combining C- and L-band improves classification accuracy by 20%. Adding a second polarization at one frequency only improves classification accuracy by 10–14% and separates thin ice and calm open water. Under similar winter-ice conditions, ERS-1 (Cvv) and Radarsat (CHH) would overestimate the multi-year ice fraction by 15% but correctly map the spatial variability of ice thickness; J-ERS-1 (LHH) would perform poorly;and J-ERS-1 combined with ERS-1 or Radarsat would yield reliable estimates of the old, thick, first-year and thin-ice fractions, and of the spatial distribution of ridges. With two polarizations, future single-frequency space-borne SARs could improve our current capability to discriminate thinner ice types.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alignment of Multifrequency SAR Images Acquired Over Sea Ice Using Drift Compensation;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2023

2. Joint Use of L-and C-band Spaceborne SAR Data for Sea ICE Monitoring;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

3. Alignment of L- and C-Band SAR Images for Enhanced Observations of Sea Ice;IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium;2022-07-17

4. Robust Multiseasonal Ice Classification From High-Resolution X-Band SAR;IEEE Transactions on Geoscience and Remote Sensing;2022

5. A Two-Round Weight Voting Strategy-Based Ensemble Learning Method for Sea Ice Classification of Sentinel-1 Imagery;Remote Sensing;2021-10-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3