Abstract
Sea ice information in the Arctic region is essential for climatic change monitoring and ship navigation. Although many sea ice classification methods have been put forward, the accuracy and usability of classification systems can still be improved. In this paper, a two-round weight voting strategy-based ensemble learning method is proposed for refining sea ice classification. The proposed method includes three main steps. (1) The preferable features of sea ice are constituted by polarization features (HH, HV, HH/HV) and the top six GLCM-derived texture features via a random forest. (2) The initial classification maps can then be generated by an ensemble learning method, which includes six base classifiers (NB, DT, KNN, LR, ANN, and SVM). The tuned voting weights by a genetic algorithm are employed to obtain the category score matrix and, further, the first coarse classification result. (3) Some pixels may be misclassified due to their corresponding numerically close score value. By introducing an experiential score threshold, each pixel is identified as a fuzzy or an explicit pixel. The fuzzy pixels can then be further rectified based on the local similarity of the neighboring explicit pixels, thereby yielding the final precise classification result. The proposed method was examined on 18 Sentinel-1 EW images, which were captured in the Northeast Passage from November 2019 to April 2020. The experiments show that the proposed method can effectively maintain the edge profile of sea ice and restrain noise from SAR. It is superior to the current mainstream ensemble learning algorithms with the overall accuracy reaching 97%. The main contribution of this study is proposing a superior weight voting strategy in the ensemble learning method for sea ice classification of Sentinel-1 imagery, which is of great significance for guiding secure ship navigation and ice hazard forecasting in winter.
Funder
Key Technology Research and Development Program of Shandong
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献