A Two-Round Weight Voting Strategy-Based Ensemble Learning Method for Sea Ice Classification of Sentinel-1 Imagery

Author:

Wang BinORCID,Xia Linghui,Song DongmeiORCID,Li Zhongwei,Wang Ning

Abstract

Sea ice information in the Arctic region is essential for climatic change monitoring and ship navigation. Although many sea ice classification methods have been put forward, the accuracy and usability of classification systems can still be improved. In this paper, a two-round weight voting strategy-based ensemble learning method is proposed for refining sea ice classification. The proposed method includes three main steps. (1) The preferable features of sea ice are constituted by polarization features (HH, HV, HH/HV) and the top six GLCM-derived texture features via a random forest. (2) The initial classification maps can then be generated by an ensemble learning method, which includes six base classifiers (NB, DT, KNN, LR, ANN, and SVM). The tuned voting weights by a genetic algorithm are employed to obtain the category score matrix and, further, the first coarse classification result. (3) Some pixels may be misclassified due to their corresponding numerically close score value. By introducing an experiential score threshold, each pixel is identified as a fuzzy or an explicit pixel. The fuzzy pixels can then be further rectified based on the local similarity of the neighboring explicit pixels, thereby yielding the final precise classification result. The proposed method was examined on 18 Sentinel-1 EW images, which were captured in the Northeast Passage from November 2019 to April 2020. The experiments show that the proposed method can effectively maintain the edge profile of sea ice and restrain noise from SAR. It is superior to the current mainstream ensemble learning algorithms with the overall accuracy reaching 97%. The main contribution of this study is proposing a superior weight voting strategy in the ensemble learning method for sea ice classification of Sentinel-1 imagery, which is of great significance for guiding secure ship navigation and ice hazard forecasting in winter.

Funder

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3