The Orientation Polarization in Hexagonal Ice Parallel and Perpendicular to the c-axis

Author:

Johari G. P.,Jones S. J.

Abstract

Abstract The relative permittivity and loss of zone-refined single crystals of hexagonal ice have been measured in the temperature range 200–271 K and frequency range 0.5 HZ–0.2 MHz, using brass, stainless steel, and gold-foil electrodes. The c-axis of the crystal was oriented parallel to the electric field in 14 samples and perpendicular to the field in 8 samples. The equilibrium relative permittivity of orientation polarization ϵ0, parallel and perpendicular to the c-axis, is 96.5±1 and the average relaxation time τay is 36 μs at 265±0.5K; ϵ0 = 124±1.5 and τav = 30 ms, at 210 K. The magnitude of the orientation polarization obeys the Curie-Weiss equation with T 0 = 15±2 K for both the orientations. These values are in contrast with the c. 17% difference in ϵo for the two orientations reported in the literature. The extrapolated limiting high-frequency relative permittivity ϵ, measured for both the orientations, is indistinguishable within 0.5%. The logarithmic plot of the product of τav and temperature against the reciprocal temperature is linear in the range 210–271 K and gives an activation energy and a pre-exponential factor of 51±2 kJ mol–1 and 0.93±0.22 ps K respectively, for both the orientations of the c-axis with respect to the electric field. The decrease in activation energy which has been reported to occur in polycrystalline ice and in single crystal ice near 230 K is not found until a temperature of 210 K. Single crystals of ice stored in the dielectric cell, after the completion of measurements, for periods ranging from 1–11 weeks at 253±2 K showed no change in their ϵ0, τav, ϵ that could be attributed to the effect of ageing on the orientation polarization.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3