The Effect of Non-Hydrostatic Stress on Intergranular Water Veins and Lenses in Ice

Author:

Nye J. F.,Mae S.

Abstract

AbstractPolycrystalline ice at the melting point has been observed in the laboratory to contain veins of water at the places where three grains meet. Under uniaxial compression lenticular water inclusions appeared at grain boundaries perpendicular to the stress, while the nearby vein began to freeze. A similar effect occurred in tension on grain boundaries parallel to the stress. When the stress on the plane of the boundary was a pure shear stress, no effect was observed. The water lenses produced by stress increased in size and decreased in number after the stress was removed. The effect under compression is explained quantitatively by the combined effects of curvature and pressure on the melting point of an ice–water interface. The rate of formation of the lenses and of their coarsening is greatly reduced by the internal pressures set up in the lenses as a result of expansion on freezing and contraction on melting; transient creep to accommodate volume changes is an essential part of the process. The effect in a grain boundary under tension may arise from pressure caused by sliding on other grain boundaries; it was absent in a bicrystal.It is concluded that internal melting and freezing at grain boundaries and veins will occur in temperate glacier ice, with some effect, not discussed here, on its permeability to water. Any pure solid at its melting point which has a dihedral angle for the liquid phase in contact with a grain boundary between 0° and 60° should show similar behaviour, in that non-hydrostatic stress should cause liquid to move away from triple junctions between grains and into grain boundaries. There may be implications for the Frank theory of the upwelling of melt fluid in the Earth’s upper mantle.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A permeameter for temperate ice: first results on permeability sensitivity to grain size;Journal of Glaciology;2022-02-03

2. Principles of Glacier Mechanics;2019-12-05

3. Index;Principles of Glacier Mechanics;2019-12-05

4. References;Principles of Glacier Mechanics;2019-12-05

5. Problems;Principles of Glacier Mechanics;2019-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3