A permeameter for temperate ice: first results on permeability sensitivity to grain size

Author:

Fowler Jacob R.,Iverson Neal R.

Abstract

AbstractResults of ice-stream models that treat temperate ice deformation as a two-phase flow are sensitive to the ice permeability. We have constructed and begun using a custom, falling-head permeameter for measuring the permeability of temperate, polycrystalline ice. Chilled water is passed through an ice disk that is kept at the pressure-melting temperature while the rate of head decrease indicates the permeability. Fluorescein dye in the water allows water-vein geometry to be studied using fluorescence microscopy. Water flow over durations of seconds to hours is Darcian, and for grain diameter d increasing from 1.7 to 8.9 mm, average permeability decreases from 2 × 10−12 to 4 × 10−15 m2. In tests with dye on fine (d = 2 mm) and coarse (d = 7 mm) ice, average area-weighted vein radii are nearly equal, 41 and 34 μm, respectively. These average radii, if included in a theory slightly modified from Nye and Frank (1973), yield permeability values within a factor of 2.0 of best-fit values based on regression of the data. Permeability values depend on d−3.4, rather than d−2 as predicted by models if vein radii are considered independent of d. In future experiments, the dependence of permeability on liquid water content will be measured.

Funder

US National Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Reference63 articles.

1. A boundary layer model for ice stream margins

2. Jordan, RE and Stark, JA (2001) Capillary tension in rotting ice layers (No. ERDC/CRREL-TR-01–13) Engineer Research and Development Center, Hanover, NH, Cold Regions Research and Engineering Lab. Available at https://apps.dtic.mil/sti/pdfs/ADA399589.pdf.

3. The Geometry of Water Veins and Nodes in Polycrystalline Ice

4. Processes controlling the downstream evolution of ice rheology in glacier shear margins: case study on Rutford Ice Stream, West Antarctica

5. Modelling the liquid-water vein system within polar ice sheets as a potential microbial habitat

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3