Abstract
We study a class of simulated annealing algorithms for global minimization of a continuous function defined on a subset of We consider the case where the selection Markov kernel is absolutely continuous and has a density which is uniformly bounded away from 0. This class includes certain simulated annealing algorithms recently introduced by various authors. We show that, under mild conditions, the sequence of states generated by these algorithms converges in probability to the global minimum of the function. Unlike most previous studies where the cooling schedule is deterministic, our cooling schedule is allowed to be adaptive. We also address the issue of almost sure convergence versus convergence in probability.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献