Abstract
One of the major difficulties in attempting to apply known queueing theory results to real problems is that almost always these results assume a time-stationary Poisson arrival process, whereas in practice the actual process is almost invariably non-stationary. In this paper we consider single-server infinite-capacity queueing models in which the arrival process is a non-stationary process with an intensity function ∧(t), t ≧ 0, which is itself a random process. We suppose that the average value of the intensity function exists and is equal to some constant, call it λ, with probability 1.
We make a conjecture to the effect that ‘the closer {∧(t), t ≧ 0} is to the stationary Poisson process with rate λ ' then the smaller is the average customer delay, and then we verify the conjecture in the special case where the arrival process is an interrupted Poisson process.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献