Directionally convex ordering of random measures, shot noise fields, and some applications to wireless communications

Author:

Błaszczyszyn Bartłomiej,Yogeshwaran D.

Abstract

Directionally convex ordering is a useful tool for comparing the dependence structure of random vectors, which also takes into account the variability of the marginal distributions. It can be extended to random fields by comparing all finite-dimensional distributions. Viewing locally finite measures as nonnegative fields of measure values indexed by the bounded Borel subsets of the space, in this paper we formulate and study directionally convex ordering of random measures on locally compact spaces. We show that the directionally convex order is preserved under some of the natural operations considered on random measures and point processes, such as deterministic displacement of points, independent superposition, and thinning, as well as independent, identically distributed marking. Further operations on Cox point processes such as position-dependent marking and displacement of points are shown to preserve the order. We also examine the impact of the directionally convex order on the second moment properties, in particular on clustering and on Palm distributions. Comparisons of Ripley's functions and pair correlation functions, as well as examples, seem to indicate that point processes higher in the directionally convex order cluster more. In our main result we show that nonnegative integral shot noise fields with respect to the directionally convex ordered random measures inherit this ordering from the measures. Numerous applications of this result are shown, in particular to comparison of various Cox processes and some performance measures of wireless networks, in both of which shot noise fields appear as key ingredients. We also mention a few pertinent open questions.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neveu’s Exchange Formula for Analysis of Wireless Networks With Hotspot Clusters;Frontiers in Communications and Networks;2022-06-28

2. Ross’s second conjecture and supermodular stochastic ordering;Queueing Systems;2022-04

3. On negative association of some finite point processes on general state spaces;Journal of Applied Probability;2019-03

4. Laplace Functional Ordering of Point Processes in Large-Scale Wireless Networks;Wireless Communications and Mobile Computing;2018-11-01

5. Some Comments on Stochastic Orders and Posets;Studies in Systems, Decision and Control;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3