Author:
Badescu Andrei L.,Cheung Eric C. K.,Landriault David
Abstract
In this paper we consider an extension of the Sparre Andersen insurance risk model by relaxing one of its independence assumptions. The newly proposed dependence structure is introduced through the premise that the joint distribution of the interclaim time and the subsequent claim size is bivariate phase-type (see, e.g. Assaf et al. (1984) and Kulkarni (1989)). Relying on the existing connection between risk processes and fluid flows (see, e.g. Badescu et al. (2005), Badescu, Drekic and Landriault (2007), Ramaswami (2006), and Ahn, Badescu and Ramaswami (2007)), we construct an analytically tractable fluid flow that leads to the analysis of various ruin-related quantities in the aforementioned risk model. Using matrix-analytic methods, we obtain an explicit expression for the Gerber–Shiu discounted penalty function (see Gerber and Shiu (1998)) when the penalty function depends on the deficit at ruin only. Finally, we investigate how some ruin-related quantities involving the surplus immediately prior to ruin can also be analyzed via our fluid flow methodology.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献