Author:
Resnick Sidney I.,Tomkins R. J.
Abstract
For random variables {Xn, n≧ 1} unbounded above setMn= max {X1,X2, …,Xn}. When do normalizing constantsbnexist such thatMn/bn→1 a.s.; i.e., when is {Mn} a.s. stable? If {Xn} is i.i.d. then {Mn} is a.s. stable iff for alland in this casebn∼F–1(1 – 1/n) Necessary and sufficient conditions for lim supn→∞,Mn/bn= l >1 a.s. are given and this is shown to be insufficient in general for lim infn→∞Mn/bn= 1 a.s. except whenl= 1. When theXnare r.v.'s defined on a finite Markov chain, one shows by means of an analogue of the Borel Zero-One Law and properties of semi-Markov matrices that the stability problem for this case can be reduced to the i.i.d. case.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献