Author:
Resnick Sidney I.,Neuts Marcel F.
Abstract
Consider the bivariate sequence of r.v.'s {(Jn, Xn), n ≧ 0} with X0 = - ∞ a.s. The marginal sequence {Jn} is an irreducible, aperiodic, m-state M.C., m < ∞, and the r.v.'s Xn are conditionally independent given {Jn}. Furthermore P{Jn = j, Xn ≦ x | Jn − 1 = i} = pijHi(x) = Qij(x), where H1(·), · · ·, Hm(·) are c.d.f.'s. Setting Mn = max {X1, · · ·, Xn}, we obtain P{Jn = j, Mn ≦ x | J0 = i} = [Qn(x)]i, j, where Q(x) = {Qij(x)}. The limiting behavior of this probability and the possible limit laws for Mn are characterized.Theorem. Let ρ(x) be the Perron-Frobenius eigenvalue of Q(x) for real x; then:(a)ρ(x) is a c.d.f.;(b) if for a suitable normalization {Qijn(aijnx + bijn)} converges completely to a matrix {Uij(x)} whose entries are non-degenerate distributions then Uij(x) = πjρU(x), where πj = limn → ∞pijn and ρU(x) is an extreme value distribution;(c) the normalizing constants need not depend on i, j;(d) ρn(anx + bn) converges completely to ρU(x);(e) the maximum Mn has a non-trivial limit law ρU(x) iff Qn(x) has a non-trivial limit matrix U(x) = {Uij(x)} = {πjρU(x)} or equivalently iff ρ(x) or the c.d.f. πi = 1mHiπi(x) is in the domain of attraction of one of the extreme value distributions. Hence the only possible limit laws for {Mn} are the extreme value distributions which generalize the results of Gnedenko for the i.i.d. case.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference6 articles.
1. Fabens A. J. and Neuts M. F. (1969) The limiting distribution of the maximum term in a sequence of random variables defined on a Markov chain. J. Appl. Prob. To appear.
2. Limit Theorems for Markov Renewal Processes
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献