Customer average and time average queue lengths and waiting times

Author:

Marshall Kneale T.,Wolff Ronald W.

Abstract

Bounds are obtained for the difference between the expected number in the queue found by an arrival and the time average expected number in the queue for the stationary GI/G/m queue. The lower bound is completely general but the upper bound requires that the class of inter-arrival distributions be restricted. When the upper bound applies, these quantities differ by at most one customer. Analogous results are obtained for the difference between the arrival average and time average number in the system for the GI/G/1 queue. An upper bound is also determined for the kth factorial moment of the number found in the queue by an arrival in terms of the kth. moment about the origin of the wait in the queue. Inequalities on the mean virtual wait are found in terms of the mean actual wait which show that under the same restrictions, these two measures of congestion differ by no more than half the mean inter-arrival time for the GI/G/1 queue.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3