Abstract
Little's theorem states that under very general conditions L = λW, where L is the time average number in the system, W is the expected sojourn time in the system, and λ is the mean arrival rate to the system. For certain systems it is known that relations of the form E((L)l) = λ lE((W)l) are also true, where (L)l = L(L – 1)· ·· (L – l + 1). It is shown in this paper that closely analogous relations hold in closed, product-form queueing networks. Similar expressions relate Nji and Sji, where Nji is the total number of class j jobs at center i and Sji is the total sojourn time of a class j job at center i, when center i is a single-server, FCFS center. When center i is a c-server, FCFS center, Qji and Wji are related this way, where Qji is the number of class j jobs queued, but not in service at center i and Wji is the waiting time in queue of a class j job at center i. More remarkably, generalizations of these results to joint moments of queue lengths and sojourn times along overtake-free paths are shown to hold.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献