Abstract
This paper studies the dependency structure of the intervals between responses in the renewal inhibited Poisson process, and continues the author's earlier work on this type of process ((1970a), (1970b)). A new approach to the intervals between events in a stationary point process, based on the idea of an average event, is introduced. Average event initial conditions (as opposed to equilibrium initial conditions previously determined) for the renewal inhibited Poisson process are obtained and event stationarity of the resulting response process is established. The joint distribution and correlation between pairs of contiguous synchronous intervals is obtained; further, the joint distribution of non-contiguous pairs of synchronous intervals is derived. Finally, the joint distributions of pairs of contiguous synchronous and asynchronous intervals are related, and a similar but more general stationary point result is conjectured.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献