Abstract
This paper is concerned with the spectrum of the intervals between responses in the renewal inhibited Poisson process, and continues the author's earlier work on this type of process ((1970a), (1970b), (1971)). A generating function for all the pairwise joint distributions of the synchronous intervals following an average response is obtained and leads directly to the associated serial correlations. It is shown that these correlations are equivalent to those predicted on different assumptions by the general stationary point theory. The results are then used to obtain the interval spectrum, and to exhibit a relationship between the sum of the serial correlations and the variance-time function. Explicit results for the spectrum of the renewal inhibited Poisson process are given for gamma inhibitory distributions, and the qualitative behavior is determined. Possible further developments are briefly discussed.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability