Author:
Yokoyama Yusuke,Koizumi Mamito,Matsuzaki Hiroyuki,Miyairi Yosuke,Ohkouchi Naohiko
Abstract
We have developed accelerator mass spectrometry (AMS) measurement techniques for ultra small-size samples ranging from 0.01 to 0.10 mg C with a new type of MC-SNICS ion source system. We can generate 4 times higher ion beam current intensity for ultra-small samples by optimization of graphite position in the target holder with the new ionizer geometry. CO2 gas graphitized in the newly developed vacuum line is pressed to a depth of 1.5 mm from the front of the target holder. This is much deeper than the previous position at 0.35 mm depth. We measured 12C4+ beam currents generated by small standards and ion beam currents (15–30 μA) from the targets in optimized position, lasting 20 min for 0.01 mg C and 65 min for 0.10 mg C. We observed that the measured 14C/12C ratios are unaffected by the difference of ion beam currents ranging from 5 to 30 μA, enabling measurement of ultra-small samples with high precision. Examination of the background samples revealed 1.1 μg of modern and 1 μg of dead carbon contaminations during target graphite preparation. We make corrections for the contamination from both the modern and background components. Reduction of the contamination is necessary for conducting more accurate measurement.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Archeology
Cited by
78 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献