Preliminary Results for the Extraction and Measurement of Cosmogenic in Situ 14C from Quartz

Author:

Naysmith P,Cook G T,Phillips W M,Lifton N A,Anderson R

Abstract

Radiocarbon is produced within minerals at the earth's surface (in situ production) by a number of spallation reactions. Its relatively short half-life of 5730 yr provides us with a unique cosmogenic nuclide tool for the measurement of rapid erosion rates (>10−3 cm yr−1) and events occurring over the past 25 kyr. At SUERC, we have designed and built a vacuum system to extract 14C from quartz which is based on a system developed at the University of Arizona. This system uses resistance heating of samples to a temperature of approximately 1100° in the presence of lithium metaborate (LiBO2) to dissolve the quartz and liberate any carbon present. During extraction, the carbon is oxidized to CO2 in an O2 atmosphere so that it may be collected cryogenically. The CO2 is subsequently purified and converted to graphite for accelerator mass spectrometry (AMS) measurement. One of the biggest problems in measuring in situ 14C is establishing a low and reproducible system blank and efficient extraction of the in situ 14C component. Here, we present initial data for 14C-free CO2, derived from geological carbonate and added to the vacuum system to determine the system blank. Shielded quartz samples (which should be 14C free) and a surface quartz sample routinely analyzed at the University of Arizona were also analyzed at SUERC, and the data compared with values derived from the University of Arizona system.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3