Radiocarbon and Tree-Ring Dates of the Bes-Shatyr #3 Saka Kurgan in the Semirechiye, Kazakhstan

Author:

Panyushkina Irina,Grigoriev Fedor,Lange Todd,Alimbay Nursan

Abstract

This study employs tree-ring crossdating and radiocarbon measurements to determine the precise calendar age of the Bes-Shatyr Saka necropolis (43°47′N, 81°21′E) built for wealthy tribe leaders in the Ili River Valley (Semirechiye), southern Kazakhstan. We developed a 218-yr tree-ring chronology and a highly resolved sequence of14C from timbers of Bes-Shatyr kurgan #3. A 4-decadal-point14C wiggle dates the Bes-Shatyr necropolis to 600 cal BC. A 47-yr range of cutting dates adjusted the kurgan date to ∼550 BC. This is the first result of high-resolution14C dating produced for the Saka burials in the Semirechiye. The collective dating of Bes-Shatyr indicates the early appearance of the Saka necropolis in the Semirechiye eastern margins of the Saka dispersal. However, the date is a couple of centuries younger than previously suggested by single14C dates. It is likely that the Shilbiyr sanctuary (location of the Bes-Shatyr) became a strategic and sacral place for the Saka leadership in the Semirechiye long before 550 BC. Another prominent feature of the Semirechiye burial landscape, the Issyk necropolis enclosing the Golden Warrior tomb, appeared a few centuries later according to14C dating reported by other investigators. This study contributes to the Iron Age chronology of Inner Asia, demonstrating successful results of14C calibration within the Hallstatt Plateau of the14C calibration curve. It appears that the wide range of calibrated dates for the Saka occurrences in Kazakhstan (from 800 BC to AD 350) is the result of the calibration curve constraints around the middle of the 1st millennium BC.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archeology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3