Abstract
We investigate the evolution of an urn of balls of two colors, where one chooses a pair of balls and observes rules of ball addition according to the outcome. A nonsquare ball addition matrix of the form $\left( \matrix{a & b \cr c & d \cr e & f}\right)$ corresponds to such a scheme, in contrast to pólya urn models that possess a square ball addition matrix. We look into the case of constant row sum (the so-called balanced urns) and identify a linear case therein. Two cases arise in linear urns: the nondegenerate and the degenerate. Via martingales, in the nondegenerate case one gets an asymptotic normal distribution for the number of balls of any color. In the degenerate case, a simpler probability structure underlies the process. We mention in passing a heuristic for the average-case analysis for the general case of constant row sum.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献