Author:
He Beixiang,Liu Yunan,Whitt Ward
Abstract
Motivated by non-Poisson stochastic variability found in service system arrival data, we extend established service system staffing algorithms using the square-root staffing formula to allow for non-Poisson arrival processes. We develop a general model of the non-Poisson non-stationary arrival process that includes as a special case the non-stationary Cox process (a modification of a Poisson process in which the rate itself is a non-stationary stochastic process), which has been advocated in the literature. We characterize the impact of the non-Poisson stochastic variability upon the staffing through the heavy-traffic limit of the peakedness (ratio of the variance to the mean in an associated stationary infinite-server queueing model), which depends on the arrival process through its central limit theorem behavior. We provide simple formulas to quantify the performance impact of the non-Poisson arrivals upon the staffing decisions, in order to achieve the desired service level. We conduct simulation experiments with non-stationary Markov-modulated Poisson arrival processes with sinusoidal arrival rate functions to demonstrate that the staffing algorithm is effective in stabilizing the time-varying probability of delay at designated targets.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献