Accelerated Regeneration for Markov Chain Simulations

Author:

Andradóttir Sigrún,Calvin James M.,Glynn Peter W.

Abstract

This paper describes a generalization of the classical regenerative method of simulation output analysis. Instead of blocking a generated sample path on returns to a fixed return state, a more general scheme to randomly decompose the path is used. In some cases, this decomposition scheme results in regeneration times that are a supersequence of the classical regeneration times. This “accelerated” regeneration is advantageous in several simulation contexts. It is shown that when this decomposition scheme accelerates regeneration relative to the classical regenerative method, it also yields a smaller asymptotic variance of the regenerative variance estimator than the classical method. Several other contexts in which increased regeneration frequency is beneficial are also discussed.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Regeneration Based Regenerative Estimation of Multiserver System with Multiple Vacations Policy;Information Technologies and Mathematical Modelling. Queueing Theory and Applications;2019

2. Regenerative Simulation for Queueing Networks with Exponential or Heavier Tail Arrival Distributions;ACM Transactions on Modeling and Computer Simulation;2015-11-16

3. The semi-regenerative method of simulation output analysis;ACM Transactions on Modeling and Computer Simulation;2006-07

4. Chapter 16 Simulation Algorithms for Regenerative Processes;Simulation;2006

5. Regenerative steady-state simulation of discrete-event systems;ACM Transactions on Modeling and Computer Simulation;2001-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3