Affiliation:
1. New Jersey Institute of Technology, Newark, NJ
2. Stanford University
Abstract
We develop a class of techniques for analyzing the output of simulations of a semi-regenerative process. Called the semi-regenerative method, the approach is a generalization of the regenerative method, and it can increase efficiency. We consider the estimation of various performance measures, including steady-state means, expected cumulative reward until hitting a set of states, derivatives of steady-state means, and time-average variance constants. We also discuss importance sampling and a bias-reduction technique. In each case, we develop two estimators: one based on a simulation of a single sample path, and the other a type of stratified estimator in which trajectories are generated in an independent and identically distributed manner. We establish a central limit theorem for each estimator so confidence intervals can be constructed.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Science Applications,Modeling and Simulation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献