GEOMETRIC BIJECTIONS FOR REGULAR MATROIDS, ZONOTOPES, AND EHRHART THEORY

Author:

BACKMAN SPENCER,BAKER MATTHEW,YUEN CHI HO

Abstract

Let$M$be a regular matroid. The Jacobian group$\text{Jac}(M)$of$M$is a finite abelian group whose cardinality is equal to the number of bases of$M$. This group generalizes the definition of the Jacobian group (also known as the critical group or sandpile group)$\operatorname{Jac}(G)$of a graph$G$(in which case bases of the corresponding regular matroid are spanning trees of$G$). There are many explicit combinatorial bijections in the literature between the Jacobian group of a graph$\text{Jac}(G)$and spanning trees. However, most of the known bijections use vertices of$G$in some essential way and are inherently ‘nonmatroidal’. In this paper, we construct a family of explicit and easy-to-describe bijections between the Jacobian group of a regular matroid$M$and bases of$M$, many instances of which are new even in the case of graphs. We first describe our family of bijections in a purely combinatorial way in terms of orientations; more specifically, we prove that the Jacobian group of$M$admits a canonical simply transitive action on the set${\mathcal{G}}(M)$of circuit–cocircuit reversal classes of$M$, and then define a family of combinatorial bijections$\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$between${\mathcal{G}}(M)$and bases of$M$. (Here$\unicode[STIX]{x1D70E}$(respectively$\unicode[STIX]{x1D70E}^{\ast }$) is an acyclic signature of the set of circuits (respectively cocircuits) of$M$.) We then give a geometric interpretation of each such map$\unicode[STIX]{x1D6FD}=\unicode[STIX]{x1D6FD}_{\unicode[STIX]{x1D70E},\unicode[STIX]{x1D70E}^{\ast }}$in terms of zonotopal subdivisions which is used to verify that$\unicode[STIX]{x1D6FD}$is indeed a bijection. Finally, we give a combinatorial interpretation of lattice points in the zonotope$Z$; by passing to dilations we obtain a new derivation of Stanley’s formula linking the Ehrhart polynomial of$Z$to the Tutte polynomial of$M$.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Reference39 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fragmenting any Parallelepiped into a Signed Tiling;Discrete & Computational Geometry;2024-06-11

2. Purity and Separation for Oriented Matroids;Memoirs of the American Mathematical Society;2023-09

3. Geometric bijections between spanning subgraphs and orientations of a graph;Journal of the London Mathematical Society;2023-06-13

4. Zonotopal Algebras, Orbit Harmonics, and Donaldson–Thomas Invariants of Symmetric Quivers;International Mathematics Research Notices;2023-03-16

5. Rotor-Routing Induces the Only Consistent Sandpile Torsor Structure on Plane Graphs;Forum of Mathematics, Sigma;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3